Spaces of generalized smoothness in the critical case: Optimal embeddings, continuity envelopes and approximation numbers

نویسندگان

  • Susana D. Moura
  • Júlio S. Neves
  • Cornelia Schneider
چکیده

We study necessary and sufficient conditions for embeddings of Besov spaces of generalized smoothness B p,q (Rn) into generalized Hölder spaces Λ μ(·) ∞,r(R) when s(Nτ−1) > 0 and τ−1 ∈ `q′ , where τ = σN−n/p. A borderline situation, corresponding to the limiting situation in the classical case, is included and give new results. In particular, we characterize optimal embeddings for B-spaces. As immediate applications of our results we obtain continuity envelopes and give upper and lower estimates for approximation numbers for the related embeddings. We also consider the analogous results for the Triebel-Lizorkin spaces of generalized smoothness F p,q (Rn).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuity envelopes of spaces of generalised smoothness, entropy and approximation numbers

We study continuity envelopes in spaces of generalised smoothness B ðs;CÞ pq and F ðs;CÞ pq and give some new characterisations for spaces B ðs;CÞ pq : The results are applied to obtain sharp asymptotic estimates for approximation numbers of compact embeddings of type id : B ðs1;CÞ pq ðUÞ-B2 NNðUÞ; where pos1 s2op þ 1 and U stands for the unit ball in R: In case of entropy numbers we can prove ...

متن کامل

Continuity envelopes and sharp embeddings in spaces of generalized smoothness

We study continuity envelopes in spaces of generalized smoothness B ,N p,q (R n) and F σ ,N p,q (R n). The results are applied in proving sharp embedding assertions in some limiting situations. © 2008 Elsevier Inc. All rights reserved.

متن کامل

Estimates for continuity envelopes and approximation numbers of Bessel potentials

In this paper we study spaces of Bessel potentials in n-dimensional Euclidean spaces. They are constructed on the basis of a rearrangement-invariant space (RIS) by using convolutions with Bessel-MacDonald kernels. Specifically, the treatment covers spaces of classical Bessel potentials. We establish two-sided estimates for the corresponding modulus of smoothness of order k ∈ N, ωk(f ; t), and d...

متن کامل

Embeddings and the growth envelope of Besov spaces involving only slowly varying smoothness

We characterize local embeddings of Besov spaces B p,r involving only a slowly varying smoothness b into classical Lorentz spaces. These results are applied to establish sharp local embeddings of Besov spaces in question into Lorentz-Karamata spaces. As consequence of these results, we are able to determine growth envelopes of spaces B p,r and to show that we cannot describe all local embedding...

متن کامل

Academy of Sciences of the Czech Republic

We use Kolyada’s inequality and its converse form to prove sharp embeddings of Besov spaces B p,r (involving the zero classical smoothness and a logarithmic smoothness with the exponent β) into LorentzZygmund spaces. We also determine growth envelopes of spaces B p,r . In distinction to the case when the classical smoothness is positive, we show that we cannot describe all embeddings in questio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Approximation Theory

دوره 187  شماره 

صفحات  -

تاریخ انتشار 2014